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Ah&act-Laminar natural convection in rectangular enclosures divided by multiple vertical partitions is 
studied experimentally and by numerical calculation, In the boundary layer regime, the partition tem- 
perature approximately increases linearly in the vertical direction. The boundary layer solution predicting 
the heat transfer rate is derived on the basis of the numerical results. It is shown that the Nusselt number 
is inversely proportional to (1 + N) where N is the number of partitions. This is also confirmed by the 

experiments. 

1. INTRODUCTION 

NATURAL convection in enclosures is a topic of con- 
siderable engineering interest. Applications range 
from thermal design of buildings, to cryogenic 
storage, solar collector design, nuclear reactor design, 
and others. Several excellent reviews of the literature 
[ 1, 21 have been published. 

The problem of primary interest in the literature is 
that of an enclosure with no partitions. However, in 
practical cases, vertical partitions are inserted into the 
enclosure to reduce heat losses by natural convection 
and thermal radiation. There have been several studies 
on the effect of a single vertical partition in 
suppressing natural convection, including the case of 
a porous medium f3-101. 

In particular, the present authors [5,9] proposed a 
boundary layer solution for this system and confirmed 
its validity by experiments. It is found that the 
partition has the effect of reducing the heat transfer 
rate by about 55% at high Rayleigh numbers. Thus it 
is expected that the suppression of natural convection 
becomes more significant when the multiple vertical 
partitions are inserted into an enclosure. 

Natural convection in enclosures with multiple 
vertical partitions is relatively unknown, in fact we 
are aware of only two fundamental studies 111, 121. 
Anderson and Bejan [l l] measured the heat transfer 
rates through double partitions which are inserted in 
the middle of an enclosure and indicated that the heat 
transfer rate for double partitions is 20% smaller than 
that for a single partition. Jones [12] demonstrated 
numerical results from the IOTA2 code for laminar 
buoyancy driven flows in rectangular enclosures. One 
of the results was presented for five partitions, and he 
found that the effect of dividing the enclosure into six 
cells reduces the heat transfer rate by, approximately, 
a factor of 6. 
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From the above literature, it appears that there is 
a great lack of generalized information on multiple 
vertical partitions. In this paper, Iaminar natural con- 
vection in each cell constructed by multipIe vertical 
partitions equally spaced in rectangular enclosures as 
shown in Fig. 1 was studied experimentally and by 
numerical computation. 

2. EXPERIMENTAL APPARATUS AND 

PROCEDURE 

Figure 2 shows a schematic diagram of the experi- 
mental apparatus. The main parts of the apparatus 
are the cooling part, the test section part and the 
heating part. The test section was a rectangular en- 
closure which consisted of a lucite frame (20 mm thick) 
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FIG. 1. Schematic diagram of an enclosure with partitions. 
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NOMENCLATURE 

B temperature difference between the M vertical velocity 
partition and the core region C’ dimensionless horizontal velocity, 13 W/X 

G temperature gradient in the vertical horizontal velocity 
direction L dimensionless vertical coordinate, x/W 

9 gravitational acceleration .Y vertical coordinate 
H height of the enclosure Y dimensionless horizontal coordinate, 
h heat transfer coefficient, Q/AT -Vi W 
Nil Nusselt number, h W/i I‘ horizontal coordinate. 

NW, Nusselt number based on H, hH/i 

Nu, local Nusselt number Greek symbols 
L depth of the enclosure 

; 

thermal diffusivity 
N number of partitions volumetric expansion coefficient 
PI. Prandtl number ? reducing rate of heat transfer defined by 
Ra Rayleigh number, gflATW”/(vr) equation (17) 

Ra,, Rayleigh number based on 0 dimensionless temperature, 
H, g/lATH3,‘(vx) c T- TJ,‘(T, - TJ 

P pitch between the partitions i thermal conductivity 

Q heat flux through the enclosure 1’ kinematic viscosity 
T temperature 

TC temperature at the cold wall ; 

dimensionless stream function, $/x 
stream function 

Th temperature at the hot wall R dimensionless vorticity, w W’/a 

AT temperature difference, Th - T, W vorticity. 
II dimensionless vertical velocity, u W/x 

J 

placed between two copper plates (12 mm thick) cor- the rear side of the main heaters across a bakelite 
responding to the hot and cold walls. The following plate. These heaters were divided into four parts to 
two kinds of enclosures were used in this study ; the maintain a uniform temperature distribution on the 
height and length of the enclosure were fixed (H = hot wall. A cooling chamber was attached to the rear 
300 mm and L = 200 mm) and the width was variable side of the cold wall, and the wall temperature was 
(W = 30 and 75 mm). The heating part consisted of maintained uniform by introducing a sufficiently large 
the main heaters and the guard heaters mounted on amount of temperature-controlled brine from a 
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FIG. 2. Experimental apparatus. 
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refrigerator. The temperatures were measured using 
100 pm diameter copper-constantan thermocouples 
fixed at the positions shown in Fig. 2. In order to 
minimize the heat loss, the experimental apparatus 
was covered with polystyrene foam insulating material 
60 mm thick and in addition the apparatus was located 
in a temperature-controlled room. The partition was 
made of a thin copper plate, 100 /*m thick, and the 
number of partitions was varied from 1 to 4. The 
working fluid was water. The experiments were 
carried out in the range lo6 < Ra < 10'. 

3. EXPERIMENTAL RESULTS 

The heat transfer rate across the enclosure was 
measured electrically, by monitoring the power dissi- 
pated in the main heaters (Fig. 2). The heat transfer 
measurements for H/W = 4 are presented in Fig. 3, 
where the average Nusselt number and Rayleigh num- 
ber are defined as follows : 

Nu = cw 
1AT 

Ra=~BATW3 
- 

VM 

(1) 

The physical properties appearing in the above 
definitions have been evaluated at the end-to-end 
average temperature 0.5 ( Th + T,) . 

The Nusselt number for no partitions is in good 
agreement with the correlation by Churchill [2], which 
is a generalization of the laminar boundary layer solu- 
tion of Bejan, including the effect of Prandtl number. 

In the case of partition, the Nusselt number 
decreases drastically on increasing the number of par- 
titions N, but the introduction of the partitions does 
not produce a proportional reduction in heat transfer. 
In the range of Rayleigh numbers considered here, the 
Rayleigh number dependence is almost identical for 
all cases, i.e. Nu is approximately proportional to 
Raoz5. It appears that the dominant mode of heat 

transfer in this experimental range is a boundary layer 

type. 
Duxbury [3] and Nakamura et al. [4] indicated 

that an isothermal partition model which assumes the 
partition to be isothermal can be used to estimate 
approximately the heat transfer rate across the en- 
closure with a single partition. We applied the iso- 
thermal partition model to the case of multiple parti- 
tions and estimated the Nusselt numbers. Fine lines 
also shown in this figure represent the heat transfer 
correlations obtained by the isothermal partition 
model, indicating that the Nusselt number is pro- 
portional to (N+ l)- ‘.*j. This model seems to predict 
the heat transfer rate for N = 1, but tends to under- 
predict the heat transfer rate with an increase of N. 
The reason for this is that in fact the partition is not 
isothermal but its temperature increases in the vertical 
direction due to thermal stratification of the fluid 
within both cells divided by the partition. We there- 
fore examined the detailed flow and temperature fields 
in each cell by means of numerical computation. 

4. NUMERICAL COMPUTATION 

The flow in the enclosure is assumed to be two- 
dimensional with velocity components u and u along 
the x- and y-coordinates, respectively (Fig. 1). Also 
the fluid is assumed to conform to the Boussinesq 
approximation whereby the density varies linearly 
with temperature. 

In terms of dimensionless variables of stream 
function, vorticity and temperature, the flow and 
temperature are governed by the following set of 
conservation equations : 

a0 de 
udx + vay = V%. 
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FIG. 3. Experimental Nusselt number vs Rayleigh number for H/W = 4. 
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FIG. 4. Isotherms for H/W’ = 4 and !V = 2. 

The boundary conditions at four walls of the enclosure 
are given as 

at Y=O, X=0--H/W: 

Y =o. if= -V?Y’, o=o (6) 

at Y= 1, x= O--N/W: 

Y = 0, R = -VYI, 0 = 1 (7) 

at Y=O-1, X=HjW: 

Y=O, n= -V’Y, ix&?X=O (8) 

at Y=O-I, x=0: 

Y = 0, n = -VP, ao/llx= 0. (9) 

At the partitions, the condition of continuity of 
temperature and temperature gradient are imposed. 
Of course the velocity components are zero. These 
conditions are given in terms of variables as 

‘yr+ = 0, R,+ = -V?Y i. I’ n,, = oi3 1 . 

Sic: Y i’ = ;;lO/OY,,~. (IO) 

The solution of these equations is dependent on 
the following parameters: Pr, Ra, H/W and N. 
The aspect ratio and Prandtl number were held con- 
stant (H/W = 4 and Pr = 6 which correspond to the 
above experiments). Other parameters were varied in 
the range lo4 < Ru < IO’, and N = 2 and 3. 

Because of the conditions of continuity of tem- 
perature and heat Aux across the partitions, the 
implicit calculation needed for the temperature field. 
That is, in the finite difference method the energy 
equation is initially solved for each cell by assuming 
the temperature distribution along the partitions and 
then the calculation is repeated until the solution con- 
verged [6]. This procedure becomes complex as the 
number of partitions increases. On the other hand. in 
the Galerkin finite element method the energy equa- 
tion can be solved for the enclosure as a whole, since 
a weighted residual equation used in the calculation 
of temperatureautomatically satisfies these boundary 
conditions. Thus equations (3)-( IO) were solved using 
the Galerkin finite element method. 

The solution technique is described in the literature 
well [13] and has been widely used for natural 
convection problems [14, 151. The results for & = 2 
and 3 arc obtained by a 50 x 39 and a 50 x 40 mesh. 
respectively. 

5. RESULTS OF NUMERICAL COMPUTATION 

Figure 4 shows isotherms at N = 2 for various 
Rayleigh numbers. At Ra = 104. isotherms are almost 
parallel to the side walls of the enclosure, indicating 
that most of the heat transfer is by heat conduction. 
As the Rayleigh number increases, the isotherms 
undulate remarkably and thus the effect of convection 
is pronounced. At Ra = IO’, the density of isotherms 
is more severe near the side walls and the partitions, 
but diminishes in the middle part of each cell, indi- 
cating formation of a thermal boundary layer. Here- 
after we focus on the temperature field in the bound- 
ary layer regime 

Figure 5 shows the horizontal temperature profiles 
for Rn = IO’ at different levels. The existence of the 
thermal boundary layers along the partitions is in- 
dicated clearly and the middle part of each cell is 
regarded as the core region. Figure 6 shows the par- 

Ra:lOT N=2 

Frc;. 5. Tenqxrature profiles at horizontal section for f/i W’ 7: 
4 and N = 2 at Rtt = IO’. 
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FIG. 6. Temperature profiles at vertical section for H/W = 4 
and N = 2 at Ra = 10’. 

tition and core temperature profiles in the vertical 
direction. The solid lines denote the core temperatures 

(Y = 0.166, 0.5 and 0.833) and the dotted lines are 
the partition temperatures (Y = 0.333 and 0.666). The 
temperature profile.of each partition exhibits a linear 
variation in the vertical direction except near the lower 
and upper walls of the enclosure, indicating.that the 
isothermal partition model mentioned in Section 3 is 
not appropriate. The core temperature on both sides 
of each partition does not increase at the same rate as 
the partition temperature, unlike the case of N = 1 
previously reported [5]. Thus the local heat flux 
through each partition is not uniform but varies in 
the vertical direction as shown in Fig. 7. 

Figure 8 shows the results for N = 3. The tem- 
perature variations of the outer partition (Y = 0.25 
or 0.75) and core regions on both sides of its partition 
are similar to those for N = 2. However, the tem- 
perature variations of the central partition (Y = 0.5) 
and core regions on both sides of its partition show 

6 
Ra=IO<N=2 

FIG. 7. Local Nusselt number profiles for H/W = 4 and 
N = 2 at Ra = 10’. 
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FIG. 8. Temperature profiles at vertical section for H/W = 4 
and N = 3 at Ra = IO’. 

the same behavior as those for N = 1. That is, the core 
temperature increases linearly at nearly the same rate 
as the partition temperature. Therefore, as shown in 
Fig. 9, the local heat flux varies in the vertical direction 
at the outer partition, like the case of N = 2, but is 
almost uniform at the central position, like the case 
ofN= 1. 

It is deduced from the above results that the local 
heat flux is uniform at the central partition (Y = 0.5) 
for an odd number of partitions. We try to estimate 
the heat transfer rate through the central partition 
from a simple boundary layer model previously 
applied to the case of N = 1 [5]. This boundary layer 
model includes the following assumptions. The par- 
tition temperature varies linearly in the vertical direc- 
tion, a constant temperature gradient being positive. 
The temperature gradient at the core region on both 
sides of the partition is the same as that at the 
partition, but the temperature is different. These tem- 
perature profiles are represented as 

Ra= 107,N=3 
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FIG. 9. Local Nusselt number profiles for H/W = 4 and N = 
3 at Ra = 107. 
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FIG. 10. Comparison of numerical and boundary layer solutions in Nusselt number for N = and 3 

partition plate : T = B+ Gx (11) 

core region : T = GX (12) 

where B is the temperature difference between the 
partition and the core region, and G the temperature 
gradient. These values are determined on the basis of 
the computational results for the cases of N = 1 and 
3, and therefore the following simple relations are 
obtained : 

B = ATj2(N+ 1) (13) 

(N= 1,3,...) 

G = ATi’2H. (14) 

The Nusselt number is given by 

Nu = QW/(nAT) = BW/(IAT) (15) 

where 1 represents a scale of thermal boundary layer 
thickness (= (4av/pgG) I’“). Derivation of equation 
(15) has been described in the previous study [5]. 

Thus the Nusselt number correlation is represented 
as 

Nu = 0.297Ra”“(H/W)- “4(N+ 1) ‘. (16) 

It is noted that the Nusselt number is proportional to 
(Nfl))’ instead of (N+l))‘,“’ given by the iso- 

thermal partition model mentioned in Section 3. This 
correlation predicts the heat transfer rate well not only 
for an odd number of partitions but also for an even 
number as shown in Fig. IO. The agreement for an 
even number of partitions is fortunate because the 
physical situation is not valid in this boundary layer 
model. 

Furthermore, in order to confirm the generality of 
this correlation we compare it with the experimental 
data in Section 3. The results are shown in Fig. 11. 
The referential length in the Nusselt number and the 
Rdyleigh number is the height of the enclosure, instead 
of the width because the effect of aspect ratio does not 
appear in the correlation using this definition. All of 
the experimental data for H/W = 4 and 10 agree well 
with the boundary layer solution indicated by the 
solid line, in particular for an even number of 
partitions. Thus it is evident that the heat transfer 
correlation of equation (16) is very useful for the 
prediction of heat transfer rate in the enclosure with 
multiple vertical partitions. Figure 12 shows a com- 
parison of the present boundary layer solution for 
N = 1 and numerical solutions previously reported 
for several values of H/W and Pr [5-81. This result 
deduces that the present correlation is applicable to 
air as well as water. 

IO00 

m Nu,=O 297 Ra’$N+ll-’ 

FIG. I 1. Comparison of experimental data and boundary layer solution in Nusselt number 



Natural convection heat transfer in enclosures with multiple vertical partitions 1685 

I( 

I 

3 

Single partition 1 N 8 I ) 

- Boundary layer solution I Nu,=O. 149 RaTI 

. *fl 
. 

/m;s= loY Nishimura etaL 

A H/W=10 Pr=O.?, Tong and Gerner 

CI H/W= I PrE0.7 Acharya and Tsang 

0 H/W=2 

5 
I 
106 

I 
IO' 

R% 

0 H/W=5 Prz0.7, Hoand Yih 
. H/W=10 

108 

FIG. 12. Comparison of numerical and boundary layer solutions for N = 1. 

Returning to the engineering application which 
motivated this fundamental study, we now assess the 
thermal insulation capability of the multiple vertical 
partitions. The reducing rate of heat transfer n is 
defined as 

r] = 1 -Nu,/Nt+, (17) 

where Nu, is the Nusselt number with the partitions 
of equation (16), and NuO is the Nusselt number with- 
out the partitions which is obtained from the cor- 
relation of Churchill [2]. Figure 13 shows the relation 
between the heat transfer reduction and the number 
of partitions. The value of q increases with the number 
of partitions, but the rate of increase gradually 
decreases. It is noted from an engineering standpoint 
that a useful number of partitions is 2-5, having the 
effect of reducing the heat transfer rate by 7&90%. 

6. CONCLUSIONS 

Natural convection heat transfer in rectangular en- 
closures with multiple vertical partitions was investi- 
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?=I-0.882/(N+I) 
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123456789 

N 

FIG. 13. Heat transfer reduction due to the presence of 
partitions. 

gated experimentally and by numerical computation. 
The enclosure was bounded by isothermal vertical 
walls at different temperatures and adiabatic hori- 
zontal walls. The partitions were equally spaced in 
the enclosure and the thickness of partitions was 
neglected. 

(1) In the boundary layer regime, the partition and 
core temperatures approximately increase linearly in 
the vertical direction except near the upper and lower 
walls of the enclosure. The local heat flux through the 
partitions varies in the vertical direction in most cases, 
but it is uniform at the central partition for an odd 
number of partitions. 

(2) The boundary layer solution is derived on 
the basis of the computational results and the heat 
transfer correlation is presented as 

Nu = 0.297R~“~(H/W)- “4(N+ l)- ‘. 

This correlation predicts well the experimental data 
performed additionally and the numerical results by 
other investigators. 

(3) From an engineering standpoint, a useful num- 
ber of partitions is 2-5, having the effect of reducing 
the heat transfer rate by 70-90%. 
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CONVECTION THERMIQUE NATURELLE DANS DES ENCEINTES AYANT DES 
PARTITIONS VERTICALES 

R&urn&-On etudie experimentalement et numeriquement la convection naturelle laminaire dans des 
cavitts rectangulaires divisees par des partitions verticales multiples. Dam le regime de couche limite, la 
temperature de partition augmente a peu pris linairement darts la direction verticale. La solution de couche 
limite qui predit le flux thermique transfer& est dirivte a partir des resultats numeriques. On montre que 
le nombre de Nusselt est inversement proportionnel a (1 +N), si N est le nombre de partitions. Cela est 

confirmi: par les experiences. 

WARMEUBERGANG AUFGRUND NATURLICHER KONVEKTION IN BEHALTERN 
MIT MEHREREN VERTIKALEN TRENNWANDEN 

Zusammenfassung-Die laminare nattirliche Konvektion in rechtwinkligen Behaltern mit mehreren senk- 
rechten Trennwgnden wurde experimentell und numerisch untersucht. Im Grenzschichtbereich steigt die 
Trennwandtemperatur in vertikaler Richtung annghernd linear an. Die Losung des Grenzschichtproblems, 
aus der man den WLrmeiibergangskoeffizienten erhalt, wurde von den numerischen Ergebnissen abgeleitet. 
Es wurde gezeigt, daD die Nusselt-Zahl umgekehrt proportional zu (1 +N) ist (N ist die Anzahl der 

Trennwlnde). Dies wird such durch die Versuche best%tigt. 

ECTECTBEHHOKOHBEKTkiBHbIfi TEl-IJIOl-IEPEHOC B I-IOJIOCTIIX C 
BEPTHKAjlbHbIMki l-IEPEI-OPOAKAMH 

~oTa4lmn-3KCnepuMeHTanbHOB YaCneHHOllCCne~yeTCIInaMuHapHaR~T~TBeHHaXKOHBeKUnn BnpK- 

MO~OJIbHblX IIOJIOCTIIX, pa3neJIeHHbIX pSllOM BepTliKaJlbHbIX nepWOpOAOK. B p‘S%iMe nOrpaHHWOr0 
cnofl TeMnepaTypa neperoponoK ao3panaeT nwrrefirio B sepTuKanbHoM HanpaeneHnIi. Ha 0cHoae WC- 
nemibtx pacqerorr nonpea pemeriue cricreMbr ypaeriemiii norparu%roro cnorr, rcoropoe onpenenner 
K03@#niLrrieHT Tennonepe~awi.~oKa3aHo,~To 9Hcno HycGXIbTa o6pamo npOnOpIGiOHaJIbH0 BenawHe 

(1 + N),raeN--racno neperopo~oK.~KcnepxiMeHTbrno~TBepIKAaiOT3TOTpe3ynbTaT. 


